Responsible CV: How do models fail and what can we do about it? Judy Hoffman and Viraj Prabhu Human-centered AI Tutorial @CVPR June 20, 2022

Practical Transfer Learning

Frequently select model that performs best on ImageNet

Standard Visual Recognition Pipeline

1. Collect Data

3. Train Model

2. Annotate Data

Visual Recognition Benchmarks

OFFECTIVE CONTROLOGY IN CITYSCAPES

Detection / Segmentation

Standard Visual Recognition Pipeline

1. Collect Data

3. Train Model

2. Annotate Data

Benchmark Performance

Accuracy

Millions of Images

Challenge to recognize 1000 categories

Test Image

Dog is not recognized

Deep Model

Low resolution

Motion Blur

Pose Variety

The world has high natural variation

Large Potential for Change Different: Weather, City, Car

Expensive (\$10-12 per image)

Train in Sunny Weather

Hoffman, Tzeng, Park, Zhu, Isola, Saenko, Efros, Darrell, ICML 2018.

Robust to Weather Changes?

Car Road Sidewalk Person Sky Vegetation Street Sign Building Traffic Light

Robust to Weather Changes?

Car Road Sidewalk Person Sky Vegetation Street Sign Building Traffic Light

Impact of Input Corruptions on Recognition

Gaussian Noise

Motion Blur

Brightness

CiFAR-10, ResNet-18 Clean Acc = 94.2**Corrupt Acc = 72.7**

Zoom Blur

Snow

Frost

Fog

Contrast

Elastic

Pixelate

JPEG

Hendrycks and Dietterich, ICLR, 2019.

Adversarial Examples

$+.007 \times$

 \boldsymbol{x}

"panda" 57.7% confidence

 $sign(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$

"nematode" 8.2% confidence

[Goodfellow et al. ICLR 2015]

Benchmark Challenge Adversarial

The Art of Robustness: Devil and Angel in Adversarial Machine Learning

Workshop at IEEE Conference on Computer Vision and Pattern Recognition 2022

RobustNav Towards Benchmarking Robustness in Embodied Navigation **ICCV 2021**

Judy Hoffman

Prithvijit Chattopadhyay

Roozbeh Mottaghi

Ani Kembhavi²

Visual Navigation (RGB+Depth)

POINTNAV GPS + Compass enabled navigation

Task: Go to (r, θ) location

Figure Credits: Abhishek Das

Task: Go to a "sofa"

Visual Navigation

RGB

Depth

- Agents don't have access to a "map", and must navigate based solely on sensory inputs
 - PointNav RGBD Goal Location in "Blue"
 - Clean Conditions (Success = True)

Top-Down

RobustNav

7 visual corruptions at 5 levels of severity

4 dynamics corruptions Corruptions can be due to sensor or environment variations

Agent – LoCoBot

Chattopadhyay, Hoffman, Mottaghi, Kembhavi. ICCV 2021

RobustNav Visual Corruptions

Clean

Defocus Blur

Camera Crack

Low Lighting

Severity 1

Low

Chattopadhyay, Hoffman, Mottaghi, Kembhavi. ICCV 2021

Motion Blur

Spatter

Lower FOV

Speckle Noise

RobustNav Dynamics Corruptions

Chattopadhyay, Hoffman, Mottaghi, Kembhavi. ICCV 2021

RobustNav Dynamics Corruptions

Environment Due to

Scene-level friction

Chattopadhyay, Hoffman, Mottaghi, Kembhavi. ICCV 2021

High and low friction zones

RobustNav Dynamics Corruptions

Environment Due to

Scene-level friction

Chattopadhyay, Hoffman, Mottaghi, Kembhavi. ICCV 2021

High and low friction zones

Malfunctioning components

ObjectNav RGBD — Target Object in "Blue" Clean Conditions (Success = True)

RGB

Chattopadhyay, Hoffman, Mottaghi, Kembhavi. ICCV 2021

Depth

Top-Down

Synthetic to Real Pixel Adaptation

Train

GTA (synthetic)

Test

CityScapes (Germany)

Hoffman et.al. ICML 2018

Source Domain $\sim P_S(X_S, Y_S)$ lots of **labeled** data

Source Domain $\sim P_S(X_S, Y_S)$ lots of **labeled** data

backpack

Source Domain $\sim P_S(X_S, Y_S)$ lots of **labeled** data

chair

bike

Source Domain $\sim P_S(X_S, Y_S)$ lots of **labeled** data

Source Domain $\sim P_S(X_S, Y_S)$ lots of **labeled** data

Source Domain $\sim P_S(X_S, Y_S)$ lots of **labeled** data

Source Domain $\sim P_S(X_S, Y_S)$ lots of **labeled** data

Source Domain $\sim P_S(X_S, Y_S)$ lots of **labeled** data

Domain Adaptation: Train on Source Test on Target

Source Domain $\sim P_S(X_S, Y_S)$ lots of **labeled** data

Target Domain $\sim P_T(X_T, Y_T)$ unlabeled or limited labels

Domain Adaptation: Train on Source Test on Target

Source Domain $\sim P_S(X_S, Y_S)$ lots of **labeled** data

Target Domain $\sim P_T(X_T, Y_T)$ unlabeled or limited labels

Domain Adversarial Adaptation

Ganin ICML 2015, Long ICML 2015, Tzeng et al ICCV 2015, Tzeng et al CVPR 2017, Hoffman et al ICML 2018

Synthetic to Real Pixel Adaptation

CyCADA Results: CityScapes Evaluation

Before Adaptation

CyCADA Results: CityScapes Evaluation

Before Adaptation

CyCADA Results: CityScapes Evaluation

Before Adaptation

Domain Adversarial Adaptation

Tzeng et al ICCV 2015, Tzeng et al CVPR 2017, Hoffman et al ICML 2018

Adapting to Imbalanced Data

Source data may be curated to be balanced

We have no control over target datasets!

Goal: Adapt under both data and label distribution shift

Faces [Zhang et al. 2017]

Species [Van Horn et al. 2019]

Adapting to Imbalanced Data

- Challenge: Existing DA methods (eg. domain adversarial) struggle in this setting!
 - Implicitly assume^{1,2} similar label distributions

• We turn to simpler DA approaches based on **self-training**^{3,4}

3. Grandvalet et al., NeurIPS 2004. 1. Wu et al., ICML 2019. 2. Li et al., arXiv 2020. 4. Tan *et al.*, ECCVW 2020

• Algorithm: Training on model predictions on unlabeled target No requirement of similar source/target label distributions

Adaptation with Self-Training

• Domain Shift: Target data is misaligned

 Entropy minimization can reinforce errors

 $= \mathbb{E}_{\mathbf{x}_{\mathcal{T}} \sim \mathcal{P}_{\mathcal{T}}} \Big[\sum_{c=1}^{C} -p_{\Theta}(y = c \mid \mathbf{x}_{\mathcal{T}}) \log p_{\Theta}(y = c \mid \mathbf{x}_{\mathcal{T}}) \Big]$

Adaptation with Self-Training

• Domain Shift: Target data is misaligned

 Entropy minimization can reinforce errors

 $\mathcal{L}_{CEM} = \mathbb{E}_{\mathbf{x} au \sim \mathcal{P}_{\mathcal{T}}}[\mathcal{H}_{\Theta}(y \mid \mathbf{x}_{\mathcal{T}})]$

 $= \mathbb{E}_{\mathbf{x}_{\mathcal{T}} \sim \mathcal{P}_{\mathcal{T}}} \Big[\sum_{c=1}^{C} -p_{\Theta}(y = c \mid \mathbf{x}_{\mathcal{T}}) \log p_{\Theta}(y = c \mid \mathbf{x}_{\mathcal{T}}) \Big]$

Adaptation with Self-Training

• Domain Shift: Target data is misaligned

• Entropy minimization ca reinforce errors

Domain misalignment

 $\mathcal{L}_{CEM} = \mathbb{E}_{\mathbf{x} au \sim \mathcal{P}_{\mathcal{T}}}[\mathcal{H}_{\Theta}(y)]$ $= \mathbb{E}_{\mathbf{x}_{\mathcal{T}} \sim \mathcal{P}_{\mathcal{T}}} \left| \sum_{c=1}^{C} -p_{\Theta}(y) \right|$

$$|\mathbf{x}_{\mathcal{T}})]$$

$$y = c |\mathbf{x}_{\mathcal{T}}) \log p_{\Theta}(y = c |\mathbf{x}_{\mathcal{T}}) |$$

SENTRY Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation

Viraj Prabhu

Shivam Khare

Deeksha Karthik

Judy Hoffman

ICCV 2021

Prior Work: Predictive Consistency across Aug

Natural and Adversarial Error Detection using Invariance to Image Transformations. Irani *et al.*, arXiv 2019

Detecting Errors

SimCLR, Chen et al. ICML 2020

MoCo, He et al. **CVPR 2020**

Learned Invariance (Contrastive Learning)

SENTRY: Selective Entropy Optimization

Key Idea

Identify reliable target instances via model confidence Predictive consistency^{1,2,3}

Increase confidence on consistent instances

- Bahat et al., arXiv 2019.
- Chen et al., ICML 2020. 2.
- Sohn et al., NeurIPS 2020. 3.

SENTRY: Selective Entropy Optimization

Key Idea

Identify reliable target instances via model confidence Predictive consistency^{1,2,3}

Increase confidence on consistent instances

- Bahat et al., arXiv 2019.
- Chen et al., ICML 2020. 2.
- Sohn et al., NeurIPS 2020. 3.

Sampled w/ Class Balancing

I. Peng et al., ICCV 2019.

2. Tan et al., ECCVW 2020.

SENTRY Results: Image Classification

SENTRY Results: MiniDomainNet

3.

4.

5.

6.

8.

MiniDomainNet (40 classes, 12 shifts)

Extension to Semantic Segmentation

Before Adaptation

AUGCO: Augmentation Consistency-guided Self-training for Source-free Domain Adaptive Semantic Segmentation, Prabhu*, Khare*, Karthik, Hoffman. arXiv 2021

Unconstrained Adaptation

Extension to Semantic Segmentation

Before Adaptation

AUGCO: Augmentation Consistency-guided Self-training for Source-free Domain Adaptive Semantic Segmentation, Prabhu*, Khare*, Karthik, Hoffman. arXiv 2021

Unconstrained Adaptation

Extension to Semantic Segmentation

AUGCO: Augmentation Consistency-guided Self-training for Source-free Domain Adaptive Semantic Segmentation, Prabhu*, Khare*, Karthik, Hoffman. arXiv 2021

Consistency via attention-conditioned masking

Key Idea Measure predictive consistency under: **Random augmentations**

Adapting Self-Supervised Vision Transformers by Probing Attention-Conditioned Masking Consistency, Prabhu*, Yenamandra*, Singh, Hoffman. arXiv 2022

Performance Degradation from Bias

Systems can underperform for certain subpopulations

Often caused by underrepresentation

Demographic

Geographic Bias

OpenImages

World Population

DeVries et al. CVPRW 2019.
Does object recognition work for everyone?

Ground truth: Soap

Nepal, 288 \$/month

Azure: food, cheese, bread, cake, sandwich Clarifai: food, wood, cooking, delicious, healthy **Google**: food, dish, cuisine, comfort food, spam **Amazon**: food, confectionary, sweets, burger Watson: food, food product, turmeric, seasoning **Tencent**: food, dish, matter, fast food, nutriment

Ground truth: Soap

UK, 1890 \$/month

Azure: toilet, design, art, sink Clarifai: people, faucet, healthcare, lavatory, wash closet **Google:** product, liquid, water, fluid, bathroom accessory **Amazon**: sink, indoors, bottle, sink faucet Watson: gas tank, storage tank, toiletry, dispenser, soap dispenser **Tencent**: lotion, toiletry, soap dispenser, dispenser, after shave

Can domain adaptation make obj rec work for everyone?

Train (North America) label = "statue"

Test (Rest of the world)

Prabhu, Selvaraju, Hoffman, Naik. CVPR L3D Workshop, 2022

Geographically diverse data

Dollar Street-DA

toothbrush

sofa

I. <u>https://www.gapminder.org/dollar-street</u> 2. Dubey et al., CVPR 2021.

GeoYFCC-DA basketball kitchen

Prabhu, Selvaraju, Hoffman, Naik. CVPR L3D Workshop, 2022

- Long et al., ICML 2015
- Ganin et al., ICML 2015 2.
- Prabhu et al., ICCV 2021 3.

Prabhu, Selvaraju, Hoffman, Naik. CVPR L3D Workshop, 2022

Additional challenges in GeoDA

source

Context Shift $P_{S}(c(\mathbf{x}) | \mathbf{y}) \neq P_{T}(\mathbf{x})$

Specialized solutions are needed for Geo DA!

Subpopulation Shift $P_{S}(\mathbf{x} \mid y) \neq P_{T}(\mathbf{x} \mid y)$

Prabhu, Selvaraju, Hoffman, Naik. CVPR L3D Workshop, 2022

cluster 1

Benchmarks

Need benchmarks to define expectations

Summary: Responsible Vision

Reliability Goal: Perform vision tasks as expected at deployment time.

Resilience

Withstand or adapt to a diverse set of visual conditions

Benchmarks for Analysis

RobustNav for Embodied Nav study Chattopadhyay et al, ICCV 2021

Summary: Responsible Vision

SENTRY: Selective Updates Prabhu et al, ICCV 2021

Thank you

Sean Foley

Daniel Bolya

Sruthi Sudhakar

Prithvijit Chattopadhyay

Viraj Prabhu

Deeksha Karthik Shivam Khare Bhavika Devnani

George Stoica

Aayushi Agarwal

Kartik Sarangmath

Deepanshi Deepanshi

Summary: Responsible Vision

Benchmarks for Analysis

RobustNav for Embodied Nav study Chattopadhyay et al, ICCV 2021

Domain Adaptation

SENTRY: Selective Updates Prabhu et al, ICCV 2021

Thank you! **Questions?** {judy,virajp}@gatech