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Practical Transfer Learning

Initial Training

Large Labeled  
source data

Finetuning

Small labeled  
target data

Frequently select model that performs  
best on ImageNet



Standard Visual Recognition Pipeline

1. Collect Data

2. Annotate Data

Dog

3. Train Model



Visual Recognition Benchmarks
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Standard Visual Recognition Pipeline

1. Collect Data

2. Annotate Data

Dog

3. Train Model 4. Validate Model
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Low resolution Motion Blur Pose Variety
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The world has high natural variation
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Abstract

Fully convolutional models for dense prediction have

proven successful for a wide range of visual tasks. Such

models perform well in a supervised setting, but perfor-

mance can be surprisingly poor under domain shifts that

appear mild to a human observer. For example, training

on one city and testing on another in a different geographic

region and/or weather condition may result in significantly

degraded performance due to pixel-level distribution shift.

In this paper, we introduce the first domain adaptive seman-

tic segmentation method, proposing an unsupervised adver-

sarial approach to pixel prediction problems. Our method

consists of both global and category specific adaptation

techniques. Global domain alignment is performed using

a novel semantic segmentation network with fully convolu-

tional domain adversarial learning. This initially adapted

space then enables category specific adaptation through a

generalization of constrained weak learning, with explicit

transfer of the spatial layout from the source to the tar-

get domains. Our approach outperforms baselines across

different settings on multiple large-scale datasets, includ-

ing adapting across various real city environments, different

synthetic sub-domains, from simulated to real environments,

and on a novel large-scale dash-cam dataset.

1. Introduction

Semantic segmentation is a critical visual recognition
task for a variety of applications ranging from autonomous
agent tasks, such as robotic navigation and self-driving cars,
to mapping and categorizing the natural world. As such, a
significant amount of recent work has been introduced to
tackle the supervised semantic segmentation problem us-
ing pixel-wise annotated images to train convolutional net-
works [20, 1, 23, 34, 19, 4, 33].

While performance is improving for segmentation mod-
els trained and evaluated on the same data source, there
has yet been limited research exploring the applicability of
these models to new related domains. Many of the chal-
lenges faced when considering adapting between visual do-

Figure 1: Unsupervised domain adaptation for pixel-level
semantic segmentation.

mains for classification, such as changes in appearance,
lighting, and pose, are also present when considering adapt-
ing for semantic segmentation. In addition, some new fac-
tors take on more prominence when considering recogni-
tion with localization tasks. In both classification and seg-
mentation, the prevalence of classes may vary between dif-
ferent domains, but this variance can be more exaggerated
with semantic segmentation applications as an individual
object class may now appear many times within a single
scene. For instance, semantic segmentation for self-driving
applications will focus on outdoor street scenes with ob-
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to mapping and categorizing the natural world. As such, a
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mains for classification, such as changes in appearance,
lighting, and pose, are also present when considering adapt-
ing for semantic segmentation. In addition, some new fac-
tors take on more prominence when considering recogni-
tion with localization tasks. In both classification and seg-
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object class may now appear many times within a single
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Train in Sunny Weather

Hoffman, Tzeng, Park, Zhu, Isola, Saenko, Efros, Darrell, ICML 2018.
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Impact of Input Corruptions on Recognition

Hendrycks and Dietterich, ICLR, 2019.

CiFAR-10, ResNet-18 
Clean Acc = 94.2 

 
Corrupt Acc = 72.7

↓



Adversarial Examples

[Goodfellow et al. ICLR 2015]

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.
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RobustNav 
Towards Benchmarking Robustness in Embodied Navigation
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Visual Navigation (RGB+Depth)

!3!2!1!0

Answer

Grey

Q: What color is the sofa 
in the living room?

Exit-room Find-room[living] Find-object[sofa]

Grey

!3!2!1!0

Answer

Grey

Q: What color is the sofa 
in the living room?

Exit-room Find-room[living] Find-object[sofa]

Grey

Task: Go to (r, θ) location Task: Go to a “sofa”
Figure Credits: Abhishek Das

GPS + Compass enabled navigation Semantic, Target-driven Navigation



Visual Navigation
Agents don’t have access to a “map”, and must navigate based solely on sensory inputs



RobustNav

7 visual corruptions 
at 5 levels of severity

4 dynamics corruptions
Corruptions can be due 
to sensor or 
environment variations

Agent Operating in  
a RoboTHOR Scene Clean Frame Camera Crack

Visual Corruption

Agent — LoCoBot

Dynamics Corruption

Ideal Corrupted

MOVE_AHEAD
MOVE_AHEAD 

(with Drift)

(a)

(b)

(c)
Chattopadhyay, Hoffman, Mottaghi, Kembhavi. ICCV 2021



RobustNav Visual Corruptions

Low High

Severity 5Severity 1 Visual Corruptions at 5 levels of severity

Chattopadhyay, Hoffman, Mottaghi, Kembhavi. ICCV 2021



RobustNav Dynamics Corruptions

Chattopadhyay, Hoffman, Mottaghi, Kembhavi. ICCV 2021



RobustNav Dynamics Corruptions

Chattopadhyay, Hoffman, Mottaghi, Kembhavi. ICCV 2021
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RobustNav Dynamics Corruptions

Chattopadhyay, Hoffman, Mottaghi, Kembhavi. ICCV 2021
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Synthetic to Real Pixel Adaptation

CityScapes (Germany)

Train Test

GTA (synthetic)

Hoffman et.al. ICML 2018



Domain Adaptation: Train on Source Test on Target



Domain Adaptation: Train on Source Test on Target

Source Domain
lots of labeled data

⇠ PS(XS , YS)



Domain Adaptation: Train on Source Test on Target

Source Domain
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Domain Adaptation: Train on Source Test on Target

backpack chair bike

Source Domain
lots of labeled data
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Domain Adaptation: Train on Source Test on Target

Source Domain
lots of labeled data

⇠ PS(XS , YS)



Domain Adaptation: Train on Source Test on Target

Target Domain
unlabeled or limited labels

⇠ PT (XT , YT )Source Domain
lots of labeled data
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Domain Adaptation: Train on Source Test on Target

Target Domain
unlabeled or limited labels

⇠ PT (XT , YT )Source Domain
lots of labeled data

⇠ PS(XS , YS)

Adapt



Domain Adversarial Adaptation
bottle

Classifier

Source Data

Target Data

xs

xt

ys

Minimize Discrepancy

Source 
CNN

Target 
CNN

Domain  
Classifier

Adversarial 
Loss

Source feature 
vector

Target feature 
vector

Ganin ICML 2015, Long ICML 2015, Tzeng et al ICCV 2015, Tzeng et al CVPR 2017, Hoffman et al ICML 2018



Synthetic to Real Pixel Adaptation

Hoffman et.al. ICML 2018



CyCADA Results: CityScapes Evaluation
CityScapes Image Ground Truth

Before Adaptation After Adaptation
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Vegetation
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Hoffman et.al. ICML 2018
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CyCADA Results: CityScapes Evaluation



CityScapes Image Ground Truth

Before Adaptation After Adaptation

Car
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Hoffman et.al. ICML 2018

CyCADA Results: CityScapes Evaluation



Domain Adversarial Adaptation
bottle

Classifier

Source Data

Target Data

xs

xt

ys

Minimize Discrepancy

Source 
CNN

Target 
CNN

Domain  
Classifier

Adversarial 
Loss

Source feature 
vector

Target feature 
vector

Tzeng et al ICCV 2015, Tzeng et al CVPR 2017, Hoffman et al ICML 2018

Limitation 
• Aligns marginal distributions 

• Rare classes are less represented



Adapting to Imbalanced Data
Source data may be curated to be balanced

Goal: Adapt under both data and 
label distribution shift

We have no control over target datasets!



Adapting to Imbalanced Data
• Challenge: Existing DA methods 

(eg. domain adversarial) struggle 
in this setting! 
• Implicitly assume1,2 similar label 

distributions

1. Wu et al., ICML 2019.        2. Li et al., arXiv 2020.        3. Grandvalet et al., NeurIPS 2004.     4. Tan et al., ECCVW 2020 

• We turn to simpler DA approaches based on self-training3,4  
• Algorithm: Training on model predictions on unlabeled target 

• No requirement of similar source/target label distributions

Figure credit: Wu et al., ICML 2019



Adaptation with Self-Training

• Domain Shift:  
Target data is 
misaligned 

• Entropy 
minimization can 
reinforce errors

Entropy Minimization for UDA

Poor Initialization

Source Target

Labeled Unlabeled

Classes = 

Class boundary

,misaligned
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• Domain Shift:  
Target data is 
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Adaptation with Self-Training

• Domain Shift:  
Target data is 
misaligned 

• Entropy 
minimization can 
reinforce errors

Entropy Minimization for UDA

Domain misalignment

Source Target

Labeled Unlabeled

Classes = 

Class boundary

,

Limitation 
•  Adapts in response to all observations 

Goal 
•  Adapt only on reliable observations



SENTRY 
Selective Entropy Optimization via Committee 

Consistency for Unsupervised Domain Adaptation

Shivam KhareViraj Prabhu Deeksha Karthik Judy Hoffman

ICCV 2021



Prior Work: Predictive Consistency across Aug

Natural and Adversarial Error Detection 
using Invariance to Image Transformations. 


Irani et al., arXiv 2019

Detecting Errors
Learned Invariance 

(Contrastive Learning)

SimCLR, Chen et al. 
ICML 2020

MoCo, He et al. 

CVPR 2020



Selective Entropy Minimization

Poor Initialization

Source Target

Labeled Unlabeled

Classes = 

Class boundary

,

SENTRY: Selective Entropy Optimization

1. Bahat et al., arXiv 2019. 
2. Chen et al., ICML 2020. 
3. Sohn et al., NeurIPS 2020.

Prabhu, Khare, Karthik, Hoffman. ICCV 2021

Reliable Unreliable

Key Idea  

Identify reliable 
target instances via  
model confidence 
Predictive 
consistency1,2,3 

Increase 
confidence on 
consistent 
instances



SENTRY: Selective Entropy Optimization

Selective Entropy Minimization

Domain alignment

Source Target

Labeled Unlabeled

Classes = 

Class boundary

,

Prabhu, Khare, Karthik, Hoffman. ICCV 2021

1. Bahat et al., arXiv 2019. 
2. Chen et al., ICML 2020. 
3. Sohn et al., NeurIPS 2020.

Key Idea  

Identify reliable 
target instances via  
model confidence 
Predictive 
consistency1,2,3 

Increase 
confidence on 
consistent 
instances



SENTRY: Selective Entropy Optimization via Committee Consistency
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Selective Entropy Loss

CONSISTENCY 
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Majority vote
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Minimize Entropy
confidence

Selective Entropy Loss
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Prabhu, Khare, Karthik, Hoffman. ICCV 2021
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SENTRY Results: Image Classification

MiniDomainNet1,2
Natural label shifts

1. Peng et al.,  ICCV 2019. 2. Tan et al., ECCVW 2020. Prabhu, Khare, Karthik, Hoffman. ICCV 2021



SENTRY Results: MiniDomainNet
MiniDomainNet (40 classes, 12 shiKs)
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0

22.5

45

67.5

90

DAN JAN DANN MCD BBSE F-DANN COAL InstaPBM SENTRY

81.4
77.875.9

69.5

55.3

65.4

74.572.5

67.1

Distribution-matching based Label
shift

Data + label 
distribution shift

1. Long et al.,  ICML 2015.
2. Long et al.,  ICML 2017.
3. Ganin et al., ICML 2015.
4. Saito et al., CVPR 2018.
5. Lipton et al., ICML 2018.
6. Wu et al., ICML 2019.
7. Tan et al., ECCVW 2020.
8. Li et al., arXiv 2020.

source 
(66.8)

+3.6%

”relaxed” DMself-train on confident 
pseudolabels

Entropy minimization + 
contrastive loss + 

mixup loss

SENTRY sets a new state-of-the-art of 
27/31 shifts studied
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Figure 3. Qualitative segmentation results of the source model, TENT [5], and AUGCO. White boxes highlight categories recovered by
AUGCO, whereas red boxes show some failure cases.

(a) % pseudolabel types vs iter. (b) Reliability Precision
Figure 4. Analyzing pseudolabel types and reliability precision.

pixels is far more important than just using the transforms
for training itself, e.g. +13.9 points better when using both
spatial and pixel transforms (last 2 rows).
. Spatial and pixel transforms are complementary.
While consistency under both spatial and pixel transforma-
tions is effective for selection (44.6 and 45.6 points), using
both simultaneously performs best (47.1 mIoU).

4.3. Analyzing AUGCO

Fig. 3 shows qualitative segmentation results achieved by
our method. We further analyze:
Evaluating reliability measure (Fig. 4). To evaluate
whether AUGCO’s selection strategy is indeed a good indica-
tor of reliability, we first measure the accuracy of pseudola-
bels marked as reliable and unreliable – reliable pseudolabels
have an accuracy of 86.2%, whereas unreliable ones have a
low accuracy of 19.1%; further these statistics are stable over
the course of training (plot in supp.). Fig. 4a breaks down
predictions as reliable and unreliable as training progresses –
as seen, the proportion of reliable pixels increases over time.

In Fig. 4b, we evaluate the reliability measure by category.
For each category, we report i) precision of reliability with
respect to correctness (when a pixel prediction is reliable,
how often is it actually correctly classified?), and ii) preci-
sion of unreliability with respect to incorrectness. As seen,

unreliable predictions are highly correlated with being incor-
rect across categories, which explains the effectiveness of
excluding them from training. However, the precision of the
reliability measure is significantly higher for head categories
(e.g. road, building, car) than for the tail (e.g. bicycle, bus,
train). In fact, we observe a high correlation between the
precision of reliabilty for a given category and its mIoU after
adaptation (Pearson correlation coefficient=0.88).
Computational efficiency. AUGCO is a lightweight adapta-
tion method, requiring i) only one additional forward pass
for the secondary view during training, and ii) updates only
to batchnorm parameters. Further, across our experiments,
we observe AUGCO to lead to optimal performance within a
single pass over target data.
Convergence. To test AUGCO’s training stability beyond
an epoch, we perform GTA!Cityscapes adaptation for 8
epochs with a lower learning rate of 1⇥10�5. We observe
performance peaks at 45.48 at 5 epochs and then remains
stable for the remaining epochs.

5. Limitations & Conclusion
Despite AUGCO’s versatility, its effectiveness is limited

by the correlation between predictive consistency and cor-
rectness, which varies across categories. Modifying source
training to improve this correlation may be promising future
work. Further, AUGCO requires an extra forward pass and
confidence thresholding, which makes it slightly slower than
TENT [5]. Finally, while AUGCO seeks to make source-free
adaptation more robust, such unsupervised training still has
the potential to fail silently. A deeper investigation into the
the failure modes of such methods is required before deploy-
ment in sensitive applications. Despite these limitations, we
believe that AUGCO is a step towards developing an effec-
tive source-free adaptation algorithm that can be used in the
real-world at practical computational cost.
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pixels is far more important than just using the transforms
for training itself, e.g. +13.9 points better when using both
spatial and pixel transforms (last 2 rows).
. Spatial and pixel transforms are complementary.
While consistency under both spatial and pixel transforma-
tions is effective for selection (44.6 and 45.6 points), using
both simultaneously performs best (47.1 mIoU).

4.3. Analyzing AUGCO

Fig. 3 shows qualitative segmentation results achieved by
our method. We further analyze:
Evaluating reliability measure (Fig. 4). To evaluate
whether AUGCO’s selection strategy is indeed a good indica-
tor of reliability, we first measure the accuracy of pseudola-
bels marked as reliable and unreliable – reliable pseudolabels
have an accuracy of 86.2%, whereas unreliable ones have a
low accuracy of 19.1%; further these statistics are stable over
the course of training (plot in supp.). Fig. 4a breaks down
predictions as reliable and unreliable as training progresses –
as seen, the proportion of reliable pixels increases over time.

In Fig. 4b, we evaluate the reliability measure by category.
For each category, we report i) precision of reliability with
respect to correctness (when a pixel prediction is reliable,
how often is it actually correctly classified?), and ii) preci-
sion of unreliability with respect to incorrectness. As seen,

unreliable predictions are highly correlated with being incor-
rect across categories, which explains the effectiveness of
excluding them from training. However, the precision of the
reliability measure is significantly higher for head categories
(e.g. road, building, car) than for the tail (e.g. bicycle, bus,
train). In fact, we observe a high correlation between the
precision of reliabilty for a given category and its mIoU after
adaptation (Pearson correlation coefficient=0.88).
Computational efficiency. AUGCO is a lightweight adapta-
tion method, requiring i) only one additional forward pass
for the secondary view during training, and ii) updates only
to batchnorm parameters. Further, across our experiments,
we observe AUGCO to lead to optimal performance within a
single pass over target data.
Convergence. To test AUGCO’s training stability beyond
an epoch, we perform GTA!Cityscapes adaptation for 8
epochs with a lower learning rate of 1⇥10�5. We observe
performance peaks at 45.48 at 5 epochs and then remains
stable for the remaining epochs.

5. Limitations & Conclusion
Despite AUGCO’s versatility, its effectiveness is limited

by the correlation between predictive consistency and cor-
rectness, which varies across categories. Modifying source
training to improve this correlation may be promising future
work. Further, AUGCO requires an extra forward pass and
confidence thresholding, which makes it slightly slower than
TENT [5]. Finally, while AUGCO seeks to make source-free
adaptation more robust, such unsupervised training still has
the potential to fail silently. A deeper investigation into the
the failure modes of such methods is required before deploy-
ment in sensitive applications. Despite these limitations, we
believe that AUGCO is a step towards developing an effec-
tive source-free adaptation algorithm that can be used in the
real-world at practical computational cost.
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pixels is far more important than just using the transforms
for training itself, e.g. +13.9 points better when using both
spatial and pixel transforms (last 2 rows).
. Spatial and pixel transforms are complementary.
While consistency under both spatial and pixel transforma-
tions is effective for selection (44.6 and 45.6 points), using
both simultaneously performs best (47.1 mIoU).

4.3. Analyzing AUGCO

Fig. 3 shows qualitative segmentation results achieved by
our method. We further analyze:
Evaluating reliability measure (Fig. 4). To evaluate
whether AUGCO’s selection strategy is indeed a good indica-
tor of reliability, we first measure the accuracy of pseudola-
bels marked as reliable and unreliable – reliable pseudolabels
have an accuracy of 86.2%, whereas unreliable ones have a
low accuracy of 19.1%; further these statistics are stable over
the course of training (plot in supp.). Fig. 4a breaks down
predictions as reliable and unreliable as training progresses –
as seen, the proportion of reliable pixels increases over time.

In Fig. 4b, we evaluate the reliability measure by category.
For each category, we report i) precision of reliability with
respect to correctness (when a pixel prediction is reliable,
how often is it actually correctly classified?), and ii) preci-
sion of unreliability with respect to incorrectness. As seen,

unreliable predictions are highly correlated with being incor-
rect across categories, which explains the effectiveness of
excluding them from training. However, the precision of the
reliability measure is significantly higher for head categories
(e.g. road, building, car) than for the tail (e.g. bicycle, bus,
train). In fact, we observe a high correlation between the
precision of reliabilty for a given category and its mIoU after
adaptation (Pearson correlation coefficient=0.88).
Computational efficiency. AUGCO is a lightweight adapta-
tion method, requiring i) only one additional forward pass
for the secondary view during training, and ii) updates only
to batchnorm parameters. Further, across our experiments,
we observe AUGCO to lead to optimal performance within a
single pass over target data.
Convergence. To test AUGCO’s training stability beyond
an epoch, we perform GTA!Cityscapes adaptation for 8
epochs with a lower learning rate of 1⇥10�5. We observe
performance peaks at 45.48 at 5 epochs and then remains
stable for the remaining epochs.

5. Limitations & Conclusion
Despite AUGCO’s versatility, its effectiveness is limited

by the correlation between predictive consistency and cor-
rectness, which varies across categories. Modifying source
training to improve this correlation may be promising future
work. Further, AUGCO requires an extra forward pass and
confidence thresholding, which makes it slightly slower than
TENT [5]. Finally, while AUGCO seeks to make source-free
adaptation more robust, such unsupervised training still has
the potential to fail silently. A deeper investigation into the
the failure modes of such methods is required before deploy-
ment in sensitive applications. Despite these limitations, we
believe that AUGCO is a step towards developing an effec-
tive source-free adaptation algorithm that can be used in the
real-world at practical computational cost.
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pixels is far more important than just using the transforms
for training itself, e.g. +13.9 points better when using both
spatial and pixel transforms (last 2 rows).
. Spatial and pixel transforms are complementary.
While consistency under both spatial and pixel transforma-
tions is effective for selection (44.6 and 45.6 points), using
both simultaneously performs best (47.1 mIoU).

4.3. Analyzing AUGCO

Fig. 3 shows qualitative segmentation results achieved by
our method. We further analyze:
Evaluating reliability measure (Fig. 4). To evaluate
whether AUGCO’s selection strategy is indeed a good indica-
tor of reliability, we first measure the accuracy of pseudola-
bels marked as reliable and unreliable – reliable pseudolabels
have an accuracy of 86.2%, whereas unreliable ones have a
low accuracy of 19.1%; further these statistics are stable over
the course of training (plot in supp.). Fig. 4a breaks down
predictions as reliable and unreliable as training progresses –
as seen, the proportion of reliable pixels increases over time.

In Fig. 4b, we evaluate the reliability measure by category.
For each category, we report i) precision of reliability with
respect to correctness (when a pixel prediction is reliable,
how often is it actually correctly classified?), and ii) preci-
sion of unreliability with respect to incorrectness. As seen,

unreliable predictions are highly correlated with being incor-
rect across categories, which explains the effectiveness of
excluding them from training. However, the precision of the
reliability measure is significantly higher for head categories
(e.g. road, building, car) than for the tail (e.g. bicycle, bus,
train). In fact, we observe a high correlation between the
precision of reliabilty for a given category and its mIoU after
adaptation (Pearson correlation coefficient=0.88).
Computational efficiency. AUGCO is a lightweight adapta-
tion method, requiring i) only one additional forward pass
for the secondary view during training, and ii) updates only
to batchnorm parameters. Further, across our experiments,
we observe AUGCO to lead to optimal performance within a
single pass over target data.
Convergence. To test AUGCO’s training stability beyond
an epoch, we perform GTA!Cityscapes adaptation for 8
epochs with a lower learning rate of 1⇥10�5. We observe
performance peaks at 45.48 at 5 epochs and then remains
stable for the remaining epochs.

5. Limitations & Conclusion
Despite AUGCO’s versatility, its effectiveness is limited

by the correlation between predictive consistency and cor-
rectness, which varies across categories. Modifying source
training to improve this correlation may be promising future
work. Further, AUGCO requires an extra forward pass and
confidence thresholding, which makes it slightly slower than
TENT [5]. Finally, while AUGCO seeks to make source-free
adaptation more robust, such unsupervised training still has
the potential to fail silently. A deeper investigation into the
the failure modes of such methods is required before deploy-
ment in sensitive applications. Despite these limitations, we
believe that AUGCO is a step towards developing an effec-
tive source-free adaptation algorithm that can be used in the
real-world at practical computational cost.
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pixels is far more important than just using the transforms
for training itself, e.g. +13.9 points better when using both
spatial and pixel transforms (last 2 rows).
. Spatial and pixel transforms are complementary.
While consistency under both spatial and pixel transforma-
tions is effective for selection (44.6 and 45.6 points), using
both simultaneously performs best (47.1 mIoU).

4.3. Analyzing AUGCO

Fig. 3 shows qualitative segmentation results achieved by
our method. We further analyze:
Evaluating reliability measure (Fig. 4). To evaluate
whether AUGCO’s selection strategy is indeed a good indica-
tor of reliability, we first measure the accuracy of pseudola-
bels marked as reliable and unreliable – reliable pseudolabels
have an accuracy of 86.2%, whereas unreliable ones have a
low accuracy of 19.1%; further these statistics are stable over
the course of training (plot in supp.). Fig. 4a breaks down
predictions as reliable and unreliable as training progresses –
as seen, the proportion of reliable pixels increases over time.

In Fig. 4b, we evaluate the reliability measure by category.
For each category, we report i) precision of reliability with
respect to correctness (when a pixel prediction is reliable,
how often is it actually correctly classified?), and ii) preci-
sion of unreliability with respect to incorrectness. As seen,

unreliable predictions are highly correlated with being incor-
rect across categories, which explains the effectiveness of
excluding them from training. However, the precision of the
reliability measure is significantly higher for head categories
(e.g. road, building, car) than for the tail (e.g. bicycle, bus,
train). In fact, we observe a high correlation between the
precision of reliabilty for a given category and its mIoU after
adaptation (Pearson correlation coefficient=0.88).
Computational efficiency. AUGCO is a lightweight adapta-
tion method, requiring i) only one additional forward pass
for the secondary view during training, and ii) updates only
to batchnorm parameters. Further, across our experiments,
we observe AUGCO to lead to optimal performance within a
single pass over target data.
Convergence. To test AUGCO’s training stability beyond
an epoch, we perform GTA!Cityscapes adaptation for 8
epochs with a lower learning rate of 1⇥10�5. We observe
performance peaks at 45.48 at 5 epochs and then remains
stable for the remaining epochs.

5. Limitations & Conclusion
Despite AUGCO’s versatility, its effectiveness is limited

by the correlation between predictive consistency and cor-
rectness, which varies across categories. Modifying source
training to improve this correlation may be promising future
work. Further, AUGCO requires an extra forward pass and
confidence thresholding, which makes it slightly slower than
TENT [5]. Finally, while AUGCO seeks to make source-free
adaptation more robust, such unsupervised training still has
the potential to fail silently. A deeper investigation into the
the failure modes of such methods is required before deploy-
ment in sensitive applications. Despite these limitations, we
believe that AUGCO is a step towards developing an effec-
tive source-free adaptation algorithm that can be used in the
real-world at practical computational cost.
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pixels is far more important than just using the transforms
for training itself, e.g. +13.9 points better when using both
spatial and pixel transforms (last 2 rows).
. Spatial and pixel transforms are complementary.
While consistency under both spatial and pixel transforma-
tions is effective for selection (44.6 and 45.6 points), using
both simultaneously performs best (47.1 mIoU).

4.3. Analyzing AUGCO

Fig. 3 shows qualitative segmentation results achieved by
our method. We further analyze:
Evaluating reliability measure (Fig. 4). To evaluate
whether AUGCO’s selection strategy is indeed a good indica-
tor of reliability, we first measure the accuracy of pseudola-
bels marked as reliable and unreliable – reliable pseudolabels
have an accuracy of 86.2%, whereas unreliable ones have a
low accuracy of 19.1%; further these statistics are stable over
the course of training (plot in supp.). Fig. 4a breaks down
predictions as reliable and unreliable as training progresses –
as seen, the proportion of reliable pixels increases over time.

In Fig. 4b, we evaluate the reliability measure by category.
For each category, we report i) precision of reliability with
respect to correctness (when a pixel prediction is reliable,
how often is it actually correctly classified?), and ii) preci-
sion of unreliability with respect to incorrectness. As seen,

unreliable predictions are highly correlated with being incor-
rect across categories, which explains the effectiveness of
excluding them from training. However, the precision of the
reliability measure is significantly higher for head categories
(e.g. road, building, car) than for the tail (e.g. bicycle, bus,
train). In fact, we observe a high correlation between the
precision of reliabilty for a given category and its mIoU after
adaptation (Pearson correlation coefficient=0.88).
Computational efficiency. AUGCO is a lightweight adapta-
tion method, requiring i) only one additional forward pass
for the secondary view during training, and ii) updates only
to batchnorm parameters. Further, across our experiments,
we observe AUGCO to lead to optimal performance within a
single pass over target data.
Convergence. To test AUGCO’s training stability beyond
an epoch, we perform GTA!Cityscapes adaptation for 8
epochs with a lower learning rate of 1⇥10�5. We observe
performance peaks at 45.48 at 5 epochs and then remains
stable for the remaining epochs.

5. Limitations & Conclusion
Despite AUGCO’s versatility, its effectiveness is limited

by the correlation between predictive consistency and cor-
rectness, which varies across categories. Modifying source
training to improve this correlation may be promising future
work. Further, AUGCO requires an extra forward pass and
confidence thresholding, which makes it slightly slower than
TENT [5]. Finally, while AUGCO seeks to make source-free
adaptation more robust, such unsupervised training still has
the potential to fail silently. A deeper investigation into the
the failure modes of such methods is required before deploy-
ment in sensitive applications. Despite these limitations, we
believe that AUGCO is a step towards developing an effec-
tive source-free adaptation algorithm that can be used in the
real-world at practical computational cost.
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pixels is far more important than just using the transforms
for training itself, e.g. +13.9 points better when using both
spatial and pixel transforms (last 2 rows).
. Spatial and pixel transforms are complementary.
While consistency under both spatial and pixel transforma-
tions is effective for selection (44.6 and 45.6 points), using
both simultaneously performs best (47.1 mIoU).

4.3. Analyzing AUGCO

Fig. 3 shows qualitative segmentation results achieved by
our method. We further analyze:
Evaluating reliability measure (Fig. 4). To evaluate
whether AUGCO’s selection strategy is indeed a good indica-
tor of reliability, we first measure the accuracy of pseudola-
bels marked as reliable and unreliable – reliable pseudolabels
have an accuracy of 86.2%, whereas unreliable ones have a
low accuracy of 19.1%; further these statistics are stable over
the course of training (plot in supp.). Fig. 4a breaks down
predictions as reliable and unreliable as training progresses –
as seen, the proportion of reliable pixels increases over time.

In Fig. 4b, we evaluate the reliability measure by category.
For each category, we report i) precision of reliability with
respect to correctness (when a pixel prediction is reliable,
how often is it actually correctly classified?), and ii) preci-
sion of unreliability with respect to incorrectness. As seen,

unreliable predictions are highly correlated with being incor-
rect across categories, which explains the effectiveness of
excluding them from training. However, the precision of the
reliability measure is significantly higher for head categories
(e.g. road, building, car) than for the tail (e.g. bicycle, bus,
train). In fact, we observe a high correlation between the
precision of reliabilty for a given category and its mIoU after
adaptation (Pearson correlation coefficient=0.88).
Computational efficiency. AUGCO is a lightweight adapta-
tion method, requiring i) only one additional forward pass
for the secondary view during training, and ii) updates only
to batchnorm parameters. Further, across our experiments,
we observe AUGCO to lead to optimal performance within a
single pass over target data.
Convergence. To test AUGCO’s training stability beyond
an epoch, we perform GTA!Cityscapes adaptation for 8
epochs with a lower learning rate of 1⇥10�5. We observe
performance peaks at 45.48 at 5 epochs and then remains
stable for the remaining epochs.

5. Limitations & Conclusion
Despite AUGCO’s versatility, its effectiveness is limited

by the correlation between predictive consistency and cor-
rectness, which varies across categories. Modifying source
training to improve this correlation may be promising future
work. Further, AUGCO requires an extra forward pass and
confidence thresholding, which makes it slightly slower than
TENT [5]. Finally, while AUGCO seeks to make source-free
adaptation more robust, such unsupervised training still has
the potential to fail silently. A deeper investigation into the
the failure modes of such methods is required before deploy-
ment in sensitive applications. Despite these limitations, we
believe that AUGCO is a step towards developing an effec-
tive source-free adaptation algorithm that can be used in the
real-world at practical computational cost.
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pixels is far more important than just using the transforms
for training itself, e.g. +13.9 points better when using both
spatial and pixel transforms (last 2 rows).
. Spatial and pixel transforms are complementary.
While consistency under both spatial and pixel transforma-
tions is effective for selection (44.6 and 45.6 points), using
both simultaneously performs best (47.1 mIoU).

4.3. Analyzing AUGCO

Fig. 3 shows qualitative segmentation results achieved by
our method. We further analyze:
Evaluating reliability measure (Fig. 4). To evaluate
whether AUGCO’s selection strategy is indeed a good indica-
tor of reliability, we first measure the accuracy of pseudola-
bels marked as reliable and unreliable – reliable pseudolabels
have an accuracy of 86.2%, whereas unreliable ones have a
low accuracy of 19.1%; further these statistics are stable over
the course of training (plot in supp.). Fig. 4a breaks down
predictions as reliable and unreliable as training progresses –
as seen, the proportion of reliable pixels increases over time.

In Fig. 4b, we evaluate the reliability measure by category.
For each category, we report i) precision of reliability with
respect to correctness (when a pixel prediction is reliable,
how often is it actually correctly classified?), and ii) preci-
sion of unreliability with respect to incorrectness. As seen,

unreliable predictions are highly correlated with being incor-
rect across categories, which explains the effectiveness of
excluding them from training. However, the precision of the
reliability measure is significantly higher for head categories
(e.g. road, building, car) than for the tail (e.g. bicycle, bus,
train). In fact, we observe a high correlation between the
precision of reliabilty for a given category and its mIoU after
adaptation (Pearson correlation coefficient=0.88).
Computational efficiency. AUGCO is a lightweight adapta-
tion method, requiring i) only one additional forward pass
for the secondary view during training, and ii) updates only
to batchnorm parameters. Further, across our experiments,
we observe AUGCO to lead to optimal performance within a
single pass over target data.
Convergence. To test AUGCO’s training stability beyond
an epoch, we perform GTA!Cityscapes adaptation for 8
epochs with a lower learning rate of 1⇥10�5. We observe
performance peaks at 45.48 at 5 epochs and then remains
stable for the remaining epochs.

5. Limitations & Conclusion
Despite AUGCO’s versatility, its effectiveness is limited

by the correlation between predictive consistency and cor-
rectness, which varies across categories. Modifying source
training to improve this correlation may be promising future
work. Further, AUGCO requires an extra forward pass and
confidence thresholding, which makes it slightly slower than
TENT [5]. Finally, while AUGCO seeks to make source-free
adaptation more robust, such unsupervised training still has
the potential to fail silently. A deeper investigation into the
the failure modes of such methods is required before deploy-
ment in sensitive applications. Despite these limitations, we
believe that AUGCO is a step towards developing an effec-
tive source-free adaptation algorithm that can be used in the
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pixels is far more important than just using the transforms
for training itself, e.g. +13.9 points better when using both
spatial and pixel transforms (last 2 rows).
. Spatial and pixel transforms are complementary.
While consistency under both spatial and pixel transforma-
tions is effective for selection (44.6 and 45.6 points), using
both simultaneously performs best (47.1 mIoU).

4.3. Analyzing AUGCO

Fig. 3 shows qualitative segmentation results achieved by
our method. We further analyze:
Evaluating reliability measure (Fig. 4). To evaluate
whether AUGCO’s selection strategy is indeed a good indica-
tor of reliability, we first measure the accuracy of pseudola-
bels marked as reliable and unreliable – reliable pseudolabels
have an accuracy of 86.2%, whereas unreliable ones have a
low accuracy of 19.1%; further these statistics are stable over
the course of training (plot in supp.). Fig. 4a breaks down
predictions as reliable and unreliable as training progresses –
as seen, the proportion of reliable pixels increases over time.

In Fig. 4b, we evaluate the reliability measure by category.
For each category, we report i) precision of reliability with
respect to correctness (when a pixel prediction is reliable,
how often is it actually correctly classified?), and ii) preci-
sion of unreliability with respect to incorrectness. As seen,

unreliable predictions are highly correlated with being incor-
rect across categories, which explains the effectiveness of
excluding them from training. However, the precision of the
reliability measure is significantly higher for head categories
(e.g. road, building, car) than for the tail (e.g. bicycle, bus,
train). In fact, we observe a high correlation between the
precision of reliabilty for a given category and its mIoU after
adaptation (Pearson correlation coefficient=0.88).
Computational efficiency. AUGCO is a lightweight adapta-
tion method, requiring i) only one additional forward pass
for the secondary view during training, and ii) updates only
to batchnorm parameters. Further, across our experiments,
we observe AUGCO to lead to optimal performance within a
single pass over target data.
Convergence. To test AUGCO’s training stability beyond
an epoch, we perform GTA!Cityscapes adaptation for 8
epochs with a lower learning rate of 1⇥10�5. We observe
performance peaks at 45.48 at 5 epochs and then remains
stable for the remaining epochs.

5. Limitations & Conclusion
Despite AUGCO’s versatility, its effectiveness is limited

by the correlation between predictive consistency and cor-
rectness, which varies across categories. Modifying source
training to improve this correlation may be promising future
work. Further, AUGCO requires an extra forward pass and
confidence thresholding, which makes it slightly slower than
TENT [5]. Finally, while AUGCO seeks to make source-free
adaptation more robust, such unsupervised training still has
the potential to fail silently. A deeper investigation into the
the failure modes of such methods is required before deploy-
ment in sensitive applications. Despite these limitations, we
believe that AUGCO is a step towards developing an effec-
tive source-free adaptation algorithm that can be used in the
real-world at practical computational cost.
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train). In fact, we observe a high correlation between the
precision of reliabilty for a given category and its mIoU after
adaptation (Pearson correlation coefficient=0.88).
Computational efficiency. AUGCO is a lightweight adapta-
tion method, requiring i) only one additional forward pass
for the secondary view during training, and ii) updates only
to batchnorm parameters. Further, across our experiments,
we observe AUGCO to lead to optimal performance within a
single pass over target data.
Convergence. To test AUGCO’s training stability beyond
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epochs with a lower learning rate of 1⇥10�5. We observe
performance peaks at 45.48 at 5 epochs and then remains
stable for the remaining epochs.
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Computational efficiency. AUGCO is a lightweight adapta-
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confidence thresholding, which makes it slightly slower than
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tor of reliability, we first measure the accuracy of pseudola-
bels marked as reliable and unreliable – reliable pseudolabels
have an accuracy of 86.2%, whereas unreliable ones have a
low accuracy of 19.1%; further these statistics are stable over
the course of training (plot in supp.). Fig. 4a breaks down
predictions as reliable and unreliable as training progresses –
as seen, the proportion of reliable pixels increases over time.

In Fig. 4b, we evaluate the reliability measure by category.
For each category, we report i) precision of reliability with
respect to correctness (when a pixel prediction is reliable,
how often is it actually correctly classified?), and ii) preci-
sion of unreliability with respect to incorrectness. As seen,

unreliable predictions are highly correlated with being incor-
rect across categories, which explains the effectiveness of
excluding them from training. However, the precision of the
reliability measure is significantly higher for head categories
(e.g. road, building, car) than for the tail (e.g. bicycle, bus,
train). In fact, we observe a high correlation between the
precision of reliabilty for a given category and its mIoU after
adaptation (Pearson correlation coefficient=0.88).
Computational efficiency. AUGCO is a lightweight adapta-
tion method, requiring i) only one additional forward pass
for the secondary view during training, and ii) updates only
to batchnorm parameters. Further, across our experiments,
we observe AUGCO to lead to optimal performance within a
single pass over target data.
Convergence. To test AUGCO’s training stability beyond
an epoch, we perform GTA!Cityscapes adaptation for 8
epochs with a lower learning rate of 1⇥10�5. We observe
performance peaks at 45.48 at 5 epochs and then remains
stable for the remaining epochs.

5. Limitations & Conclusion
Despite AUGCO’s versatility, its effectiveness is limited

by the correlation between predictive consistency and cor-
rectness, which varies across categories. Modifying source
training to improve this correlation may be promising future
work. Further, AUGCO requires an extra forward pass and
confidence thresholding, which makes it slightly slower than
TENT [5]. Finally, while AUGCO seeks to make source-free
adaptation more robust, such unsupervised training still has
the potential to fail silently. A deeper investigation into the
the failure modes of such methods is required before deploy-
ment in sensitive applications. Despite these limitations, we
believe that AUGCO is a step towards developing an effec-
tive source-free adaptation algorithm that can be used in the
real-world at practical computational cost.
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Geographic Bias

Figure 6: Density maps showing the geographical distribution of images in the ImageNet (top-left), COCO (top-right), and OpenImages (bottom-left)
datasets. A world population density map is shown for reference (bottom-right).

4. Related Work

This work is related to a larger body of work on fairness
and on building representative computer-vision systems.

Fairness in machine learning. A range of recent papers
have studied how to develop machine-learning systems that
behave according to some definition of fairness. Several for-
mulations of fairness exist. For instance, statistical parity
[5, 6, 14, 23–25, 30, 49] states that in binary-classification
settings, members of different groups should have the same
chance of receiving a positive prediction. Because statisti-
cal parity may be inappropriate when base rates differ be-
tween groups, disparate impact [15, 47] poses that positive-
classification rates between any two groups should not vary
by more than 80%. The equalized odds [18] fairness prin-
ciple (also referred to as disparate mistreatment [48]) re-
quires classification algorithms to make predictions such
that no group receives a disproportionately higher number
of false-positive or false-negative errors. The demographic
parity formulation of fairness does not focus on group mem-
bership, but are based on the idea that similar individuals
should receive similar predictions [12]. Selecting and main-
taining the “correct” fairness requirement for a real-world
is no easy task [3], in particular, in situations in which the
group membership of the system’s users is unknown. More-
over, several impossibility results exist: for instance, equal-
ized odds is incompatible with other formulations of fair-
ness [7, 10, 27], and it is impossible to achieve equalized

odds using a calibrated classifier without withholding a ran-
domly selected subset of the classifier’s predictions [35].

The empirical study presented here does not neatly fit
into many of the existing fairness as it focuses on multi-
class (and potentially multi-label) prediction rather than bi-
nary prediction. Moreover, the input provided to image-
recognition systems does not contain information on the
user or its group membership, which makes it difficult to
apply fairness formulations based on group membership of
similarities between individuals. Having said that, com-
monly used techniques to increase fairness, such as instance
re-weighting [22], analyzing features [1] may help in train-
ing image-recognition systems that work for everyone.

Building representative computer-vision systems. Sev-
eral recent papers have identified and analyzed biases in
other types of computer-vision systems. For instance,
commercial gender classification systems were found to
have substantially higher error rates for darker-skinned fe-
males than for light-skinned males [4, 34, 36]. A study of
Google Image Search revealed exaggeration of stereotypes
and systematic underrepresentation of women in search re-
sults [26], and a study of ImageNet revealed correlations
between classes and race [40]. Other studies have revealed
biases in computer-vision datasets that allow models to rec-
ognize from which dataset an image originated [43, 44].
Most related to our study is a prior analysis suggesting that
for certain classes, the confidence of image classifiers may
vary depending on where the image was collected [38].
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Does object recognition work for everyone?

DeVries et al. CVPRW 2019.

Nepal, 288 $/monthGround truth: Soap
Azure: toilet, design, art, sink
Clarifai: people, faucet, healthcare, lavatory, wash closet
Google: product, liquid, water, fluid, bathroom accessory
Amazon: sink, indoors, bottle, sink faucet
Watson: gas tank, storage tank, toiletry, dispenser, soap dispenser
Tencent: lotion, toiletry, soap dispenser, dispenser, after shave

Ground truth: Soap
Azure: food, cheese, bread, cake, sandwich
Clarifai: food, wood, cooking, delicious, healthy
Google: food, dish, cuisine, comfort food, spam
Amazon: food, confectionary, sweets, burger
Watson: food, food product, turmeric, seasoning
Tencent: food, dish, matter, fast food, nutriment

UK, 1890 $/month

Azure: bottle, wall, counter, food
Clarifai: container, food, can, medicine, stock
Google: seasoning, seasoned salt, ingredient, spice, spice rack
Amazon: shelf, tin, pantry, furniture, aluminium
Watson: tin, food, pantry, paint, can
Tencent: spice rack, chili sauce, condiment, canned food, rack

Ground truth: Spices USA, 4559 $/month
Azure: bottle, beer, counter, drink, open
Clarifai: container, food, bottle, drink, stock
Google: product, yellow, drink, bottle, plastic bottle
Amazon: beverage, beer, alcohol, drink, bottle
Watson: food, larder food supply, pantry, condiment, food seasoning
Tencent: condiment, sauce, flavorer, catsup, hot sauce

Ground truth: Spices Phillipines, 262 $/month
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Abstract

Despite the rapid progress in deep visual recognition,
modern computer vision datasets significantly overrepresent
the developed world and models trained on such datasets
underperform on images from unseen geographies. We inves-
tigate the effectiveness of unsupervised domain adaptation
(UDA) of such models across geographies at closing this
performance gap. To do so, we first curate two shifts from
existing datasets to study the Geographical DA problem,
and discover new challenges beyond data distribution shift:
context shift, wherein object surroundings may change signif-
icantly across geographies, and subpopulation shift, wherein
the intra-category distributions may shift. We demonstrate
the inefficacy of standard DA methods at Geographical DA,
highlighting the need for specialized geographical adap-
tation solutions to address the challenge of making object
recognition work for everyone.

1. Introduction

As deep-learning based computer vision systems gain
widespread adoption, it is crucial that they perform equitably
across diverse geographical deployments. However, prior
work [1] has found that in practice modern computer vision
datasets significantly overrepresent the developed world and
models trained on such datasets systematically underperform
on images from the rest of the world [2] (see Fig. 1). La-
beling images from target geographies is a natural solution
but may be expensive and difficult to scale. Unsupervised
domain adaptation [3–5] (UDA) has extensively studied the
problem of adapting models trained on a labeled source to an
unlabeled target domain. However, UDA typically considers
specific kinds of shifts in data generating distributions (e.g.
synthetic to real data [6], or clipart to sketch images [7]),
rather than distribution shifts across space and time in the
real world. In this work, we investigate the effectiveness
of UDA techniques at the practical application of adapting
trained object recognition models to novel geographies.

*Work done partially as intern at Salesforce Research.
†Work done at Salesforce Research.
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Figure 1. Modern computer vision datasets overrepresent the de-
veloped world [1]. This leads object recognition models trained on
them (left) to underperform on images from novel geographies [2]
(right – we show country of origin and model prediction above each
image). In this work we investigate the effectiveness of domain
adaptation [3] methods in bridging this performance gap.

Geographical domain adaptation presents two novel chal-
lenges beyond shifting data distributions: context shift and
subpopulation shift. Context shift arises from a change in
visual context for a given category across geographies (e.g.
predominantly indoor v/s outdoor basketball courts). Sub-
population shift arises from a change in within-category data
distributions (e.g. for a ‘toothbrush’ category, the relative
proportion of electric v/s mechanical varieties may change
across geographies). In our experiments, we demonstrate the
inefficacy of conventional adaptation strategies in addressing
these additional challenges.

Some prior work has studied the problem of transferring
deep visual models to new geographies. De Vries et al. [2]
benchmark the drop in performance of publicly available
vision API’s on images from diverse geographies from the
Dollar Street dataset [8], but do not propose a mitigation strat-
egy. Recently, Dubey et al. [9] formulate this as a domain
generalization problem and propose a solution that makes
use of auxiliary target domain embeddings. We instead pose
the problem as one of domain adaptation so as to leverage
the full potential of unlabeled target data by allowing model
updates on it. We make the following contributions:

1. To study the Geographical DA problem, we propose

Prabhu, Selvaraju, Hoffman, Naik. CVPR L3D Workshop, 2022
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Figure 3. Context shift for select categories across domains. Left: Dollar Street-DA Right: GeoYFCC-DA.

scene-level imagery. Recent work proposes the BREEDS
benchmark [18] to study model robustness against subpopu-
lation shift—the ability to generalize to novel data subclasses
not seen during training. Cai et al. [19] study propose a input-
consistency based label propagation algorithm to overcome
subpopulation shift. To our knowledge, we are the first to
study these challenges in the context of geographical DA.

3. Benchmarks and Challenges

We first present our two shifts for geographical domain
adaptation curated from the Dollar Street and GeoYFCC
datasets. We describe our curation process and analyze the
characteristics of each geographical domain shift. We then
describe and visualize the context and subpopulation shift
present in these benchmarks.

3.1. Benchmarks

Dollar Street-DA. The Dollar Street dataset was collected as
part of the GapMinder project with the aim of using “photos
as data to kill country stereotypes”. It contains photographs
and videos of everyday objects from peoples’ homes span-
ning 66 unique countries. We restrict our study to image
data and download images belonging to 128 unique cate-
gories. We filter out categories that are scene-level or too
broad (“agriculture lands”, “play areas”) or abstract / sub-
jective (“most loved items”, “things I dream of having”), as
well as categories with less than 50 images, resulting in 62
categories. We further deduplicate the dataset and merge
some highly similar categories (e.g., “plates of food” and
“plates”), leaving us with images of 58 unique and distinct
curated categories from 60 countries. We set up an adap-
tation problem from North America and Europe as source
(2930 images) and Africa, South America, and Asia as target

(8813 images). Fig. 2a presents a label histogram of each
domain.
GeoYFCC-DA. The GeoYFCC dataset [9] contains 1.1 mil-
lion images from 62 countries curated from the subset of
YFCC100M [20] images with geotags that were then au-
tomatically labeled based on keyword matching of image
tags against ImageNet-5K categories excluding those in
ILSVRC12 [21]. We create an adaptation problem from
countries in North America as source and countries in Asia,
South America, and Australia as our target domain. Due to
the automatic labeling pipeline, we notice a large amount of
label noise in the dataset and take two measures to curate the
dataset further: i) We train a ResNet50 [22] model on the
source domain and measure heldout test accuracy, and only
retain classes with > 25% accuracy. ii) We manually inspect
100 random qualitative examples from the source and target
domains for the remaining categories and exclude categories
with significant label noise. At the end of this process, we
select 68 categories with 24.1k images in the source domain
and 59.4k images in the target domain. See Fig. 2b for a
label histogram of each domain.

3.2. Challenges: Context and subpopulation shift

Notation. Let X and Y denote input and ouput spaces,
with the goal being to learn a convolutional neural network
h : X ! Y parameterized by ⇥. In unsupervised DA we
are given access to labeled source examples (xS , yS) ⇠
PS(X ,Y), and unlabeled target examples xT ⇠ PT (X ),
where S and T denote the source and target domains. The
goal is to maximize model accuracy on the target domain,
and we consider adaptation of models trained to perform K-
way object recognition: the inputs x are images, and labels
y are categorical variables y 2 {1, 2, ..,K}.

Prabhu, Selvaraju, Hoffman, Naik. CVPR L3D Workshop, 2022
1. https://www.gapminder.org/dollar-street  2. Dubey et al., CVPR 2021.
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scene-level imagery. Recent work proposes the BREEDS
benchmark [18] to study model robustness against subpopu-
lation shift—the ability to generalize to novel data subclasses
not seen during training. Cai et al. [19] study propose a input-
consistency based label propagation algorithm to overcome
subpopulation shift. To our knowledge, we are the first to
study these challenges in the context of geographical DA.

3. Benchmarks and Challenges

We first present our two shifts for geographical domain
adaptation curated from the Dollar Street and GeoYFCC
datasets. We describe our curation process and analyze the
characteristics of each geographical domain shift. We then
describe and visualize the context and subpopulation shift
present in these benchmarks.

3.1. Benchmarks

Dollar Street-DA. The Dollar Street dataset was collected as
part of the GapMinder project with the aim of using “photos
as data to kill country stereotypes”. It contains photographs
and videos of everyday objects from peoples’ homes span-
ning 66 unique countries. We restrict our study to image
data and download images belonging to 128 unique cate-
gories. We filter out categories that are scene-level or too
broad (“agriculture lands”, “play areas”) or abstract / sub-
jective (“most loved items”, “things I dream of having”), as
well as categories with less than 50 images, resulting in 62
categories. We further deduplicate the dataset and merge
some highly similar categories (e.g., “plates of food” and
“plates”), leaving us with images of 58 unique and distinct
curated categories from 60 countries. We set up an adap-
tation problem from North America and Europe as source
(2930 images) and Africa, South America, and Asia as target

(8813 images). Fig. 2a presents a label histogram of each
domain.
GeoYFCC-DA. The GeoYFCC dataset [9] contains 1.1 mil-
lion images from 62 countries curated from the subset of
YFCC100M [20] images with geotags that were then au-
tomatically labeled based on keyword matching of image
tags against ImageNet-5K categories excluding those in
ILSVRC12 [21]. We create an adaptation problem from
countries in North America as source and countries in Asia,
South America, and Australia as our target domain. Due to
the automatic labeling pipeline, we notice a large amount of
label noise in the dataset and take two measures to curate the
dataset further: i) We train a ResNet50 [22] model on the
source domain and measure heldout test accuracy, and only
retain classes with > 25% accuracy. ii) We manually inspect
100 random qualitative examples from the source and target
domains for the remaining categories and exclude categories
with significant label noise. At the end of this process, we
select 68 categories with 24.1k images in the source domain
and 59.4k images in the target domain. See Fig. 2b for a
label histogram of each domain.

3.2. Challenges: Context and subpopulation shift

Notation. Let X and Y denote input and ouput spaces,
with the goal being to learn a convolutional neural network
h : X ! Y parameterized by ⇥. In unsupervised DA we
are given access to labeled source examples (xS , yS) ⇠
PS(X ,Y), and unlabeled target examples xT ⇠ PT (X ),
where S and T denote the source and target domains. The
goal is to maximize model accuracy on the target domain,
and we consider adaptation of models trained to perform K-
way object recognition: the inputs x are images, and labels
y are categorical variables y 2 {1, 2, ..,K}.
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Figure 3. Context shift for select categories across domains. Left: Dollar Street-DA Right: GeoYFCC-DA.

scene-level imagery. Recent work proposes the BREEDS
benchmark [18] to study model robustness against subpopu-
lation shift—the ability to generalize to novel data subclasses
not seen during training. Cai et al. [19] study propose a input-
consistency based label propagation algorithm to overcome
subpopulation shift. To our knowledge, we are the first to
study these challenges in the context of geographical DA.

3. Benchmarks and Challenges

We first present our two shifts for geographical domain
adaptation curated from the Dollar Street and GeoYFCC
datasets. We describe our curation process and analyze the
characteristics of each geographical domain shift. We then
describe and visualize the context and subpopulation shift
present in these benchmarks.

3.1. Benchmarks

Dollar Street-DA. The Dollar Street dataset was collected as
part of the GapMinder project with the aim of using “photos
as data to kill country stereotypes”. It contains photographs
and videos of everyday objects from peoples’ homes span-
ning 66 unique countries. We restrict our study to image
data and download images belonging to 128 unique cate-
gories. We filter out categories that are scene-level or too
broad (“agriculture lands”, “play areas”) or abstract / sub-
jective (“most loved items”, “things I dream of having”), as
well as categories with less than 50 images, resulting in 62
categories. We further deduplicate the dataset and merge
some highly similar categories (e.g., “plates of food” and
“plates”), leaving us with images of 58 unique and distinct
curated categories from 60 countries. We set up an adap-
tation problem from North America and Europe as source
(2930 images) and Africa, South America, and Asia as target

(8813 images). Fig. 2a presents a label histogram of each
domain.
GeoYFCC-DA. The GeoYFCC dataset [9] contains 1.1 mil-
lion images from 62 countries curated from the subset of
YFCC100M [20] images with geotags that were then au-
tomatically labeled based on keyword matching of image
tags against ImageNet-5K categories excluding those in
ILSVRC12 [21]. We create an adaptation problem from
countries in North America as source and countries in Asia,
South America, and Australia as our target domain. Due to
the automatic labeling pipeline, we notice a large amount of
label noise in the dataset and take two measures to curate the
dataset further: i) We train a ResNet50 [22] model on the
source domain and measure heldout test accuracy, and only
retain classes with > 25% accuracy. ii) We manually inspect
100 random qualitative examples from the source and target
domains for the remaining categories and exclude categories
with significant label noise. At the end of this process, we
select 68 categories with 24.1k images in the source domain
and 59.4k images in the target domain. See Fig. 2b for a
label histogram of each domain.

3.2. Challenges: Context and subpopulation shift

Notation. Let X and Y denote input and ouput spaces,
with the goal being to learn a convolutional neural network
h : X ! Y parameterized by ⇥. In unsupervised DA we
are given access to labeled source examples (xS , yS) ⇠
PS(X ,Y), and unlabeled target examples xT ⇠ PT (X ),
where S and T denote the source and target domains. The
goal is to maximize model accuracy on the target domain,
and we consider adaptation of models trained to perform K-
way object recognition: the inputs x are images, and labels
y are categorical variables y 2 {1, 2, ..,K}.

PS(c(x) |y) ≠ PT(c(x) |y)

Figure 4. Subpopulation shift for select categories across domains. We plot normalized cluster assignments per-domain as approximate
subpopulation distributions – blue denotes within-category subpopulation distribution on source and orange denotes target. As seen,
subpopulation distributions shift significantly across domains. On the right we visualize random images from some of the discovered clusters,
and verify that they generally correspond to distinct subpopulations.

Data and label distribution shift. As in conventional do-
main adaptation, geographical DA also presents data distri-
bution shift (PS(x) 6= PT (x)) as object appearances change
across geographies (see Fig. 1), and label distribution shift
(PS(y) 6= PT (y)), as task label distributions change across
domains (see Fig. 2).

In addition, geographical adaptation presents two new
challenges: context and subpopulation shift.
Context shift. We define context c(x) for image x with
label y as the task-irrelevant information in the image—this
loosely corresponds to the background or surroundings of the
object of interest. We define context shift as PS(c(x)|y) 6=
PT (c(x)|y), representing a change in object context across
geographical domains.

In Fig. 3 we show qualitative examples of context shift
within our proposed Dollar Street-DA and GeoYFCC-DA
shifts for a few categories. For example, we find that in
Dollar Street-DA, most “toothbrush” images in the source
domain tend to be photographed inside bathrooms, whereas
the surroundings in the target domains are significantly more
diverse (e.g. walls and roofs). We see similar trends in
the GeoYFCC-DA shift (e.g. indoor v/s outdoor basketball
games). As deep neural networks are known to often employ
“shortcut learning” [23] of potentially spurious features (e.g.
object backgrounds) to make predictions, we hypothesize
(and experimentally verify in Sec. 4.4) that such a context
shift will present a challenge to visual recognition models
deployed in new geographies.
Subpopulation shift. We define subpopulation shift as
PS(x|y) 6= PT (x|y), representing a change in within-
category distribution across domains.

In Fig. 4, we show examples of subpopulation shift in
the Dollar Street-DA and GeoYFCC-DA benchmarks. In
the absence of subpopulation-level annotations, we use a
simple strategy to obtain approximate annotations: we use
a pretrained model (ResNet50 [22] trained on ImageNet)
to extract features for source and target images of a given
category, and perform agglomerative clustering on the com-
bined set of embeddings. We then use the inferred cluster
assignments as subpopulation annotations. We also plot the
normalized within-class distribution of cluster assignments
on the source and target domains, and measure the Wasser-
stein distance between the two as a measure of the degree of
subpopulation shift.

As seen, this simple strategy discovers distinct clusters
corresponding to semantically distinct subpopulations: e.g.
for “cleaning equipment” on Dollar Street-DA we discover
separate clusters roughly corresponding to brooms, vaccuum
cleaners, mops, and miscellaneous cleaning items. Crucially,
we find that the intra-class distribution of many categories
changes significantly across geographies (e.g. brooms make
up a significantly larger proportion of cleaning equipment in
the target domain than in the source).

Figure 5. Verifying sub-
population shift.

To quantitatively validate
the subpopulation shift, we
compute the degree of per-
class subpopulation shift: for
each class, we compute the
normalized subpopulation dis-
tribution per-domain (as visu-
alized in Fig. 4, left), measure
the cross-domain Wasserstein
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Figure 4. Subpopulation shift for select categories across domains. We plot normalized cluster assignments per-domain as approximate
subpopulation distributions – blue denotes within-category subpopulation distribution on source and orange denotes target. As seen,
subpopulation distributions shift significantly across domains. On the right we visualize random images from some of the discovered clusters,
and verify that they generally correspond to distinct subpopulations.
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(PS(y) 6= PT (y)), as task label distributions change across
domains (see Fig. 2).
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To quantitatively validate
the subpopulation shift, we
compute the degree of per-
class subpopulation shift: for
each class, we compute the
normalized subpopulation dis-
tribution per-domain (as visu-
alized in Fig. 4, left), measure
the cross-domain Wasserstein
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